Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. j. morphol ; 40(1): 204-209, feb. 2022. ilus
Artigo em Inglês | LILACS | ID: biblio-1385562

RESUMO

SUMMARY: This study aimed to evaluate the effects of six weeks of HIIT on tissue and oxidative damage markers in rats supplemented with Coutoubea spicata fraction. Thirty-two male Wistar rats were divided into 4 groups: Baseline (GB); supplemented with 100 mg/kg of Coutoubea spicata fraction (GSCS); exercised for 6 weeks with the HIIT protocol (GH); supplemented with 100 mg/kg of Coutoubea spicata fraction + HIIT for 6 weeks (GHCS). Exercised animals performed the HIIT protocol (2 x 2). Tissue damage CK, LDH, ALT and AST markers in plasma were analyzed, as well as oxidative stress MDA and SH biomarkers in plasma and in cardiac, hepatic and muscle tissues. The results showed that CK, LDH, AST and ALT enzymes showed increase in GH when compared to GB (p<0.0001). However, CK, AST and ALT markers reduced their concentrations in GHCS when compared to GH (p<0.0001), indicating that Coutoubea spicata supplementation attenuated the damage in muscle and liver tissues induced by HIIT. Plasma, liver and muscle MDA showed increase in GH after HIIT sessions; however, when compared to GHCS, it showed reduced levels (p<0.0001). SH was elevated in the GH group when compared to GB in plasma and liver tissues (p<0.0001); in contrast, reduction in GHCS when compared to GH was observed in plasma, liver and cardiac tissues, demonstrating the redox effect of HIIT on some tissues. Thus, our findings showed that Coutoubea spicata has antioxidant activity, reducing oxidative damage markers and consequently tissue damage in healthy Wistar rats after HIIT protocol, but it also demonstrated redox balance after analyzing oxidative stress markers.


RESUMEN: Este estudio tuvo como objetivo evaluar los efectos de HIIT en los marcadores de daño tisular y oxidativo en ratas suplementadas con Coutoubea spicata durante seis semanas. Treinta y dos ratas Wistar macho se dividieron en 4 grupos: línea de base (GB); suplementados con 100 mg/kg de fracción de Coutoubea spicata (GSCS); ejercitados durante 6 semanas con el protocolo HIIT (GH); suplementado con 100 mg/kg de fracción de Coutoubea spicata + HIIT durante 6 semanas (GHCS). Los animales ejercitados realizaron el protocolo HIIT (2x2). Se analizaron los marcadores de daño tisular CK, LDH, ALT y AST en plasma, así como los biomarcadores de estrés oxidativo MDA y SH en plasma y en tejidos cardiaco, hepático y muscular. Los resultados indicaron que las enzimas CK, LDH, AST y ALT mostraron aumento en GH en comparación con GB (p<0,0001). Sin embargo, los marcadores CK, AST y ALT redujeron sus concentraciones en GHCS en comparación con GH (p<0,0001), lo que indica que la suplementación con Coutoubea spicata atenuó el daño en los tejidos musculares y hepáticos inducido por HIIT. La MDA de plasma, hígado y músculo mostró un aumento en la GH después de las sesiones de HIIT; sin embargo, en comparación con GHCS, mostró niveles reducidos (p<0,0001). Se observó SH elevado en el grupo de GH en comparación con GB en plasma y tejidos hepáticos (p<0,0001); en contraste, se observó una reducción en GHCS en comparación con GH en plasma, hígado y tejidos cardíacos, lo que demuestra el efecto redox de HIIT en algunos tejidos. Por lo tanto, nuestros hallazgos mostraron que Coutoubea spicata tiene actividad antioxidante, con reducción de los marcadores de daño oxidativo y, en consecuencia, el daño tisular en ratas Wistar sanas después del protocolo HIIT, pero además demostró el equilibrio redox después de analizar los marcadores de estrés oxidativo.


Assuntos
Animais , Masculino , Ratos , Extratos Vegetais/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Gentianaceae/química , Treinamento Intervalado de Alta Intensidade , Biomarcadores , Ratos Wistar
2.
J Funct Morphol Kinesiol ; 6(2)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063420

RESUMO

BACKGROUND: The sticking region is considered an intervening factor in the performance of the bench press with high loads. OBJECTIVE: To evaluate the strength indicators in the sticking point region in Powerlifting Paralympic athletes. METHODS: Twelve Brazilian Powerlifting Paralympic athletes performed maximum isometric force (MIF), rate of force development (RFD), time at MIF, velocity, dynamic time in sticking, and surface electromyography in several distances from the bar to the chest. RESULTS: For velocity, there was a difference between the pre-sticking and sticking region (1.98 ± 0.32 and 1.30 ± 0.43, p = 0.039) and dynamic time between the pre-sticking and the sticking region (0.40 ± 0.16 and 0.97 ± 0.37, p = 00.021). In static test for the MIF, differences were found between 5.0 cm and 15.0 cm (CI 95% 784; 1088; p = 0.010) and between 10.0 cm and 5.0 cm (CI 95% 527; 768; p < 0.001). Regarding the RFD, differences were found (CI 95% 938; 1240; p = 0.004) between 5.0 cm and 25.0 cm and between 10.0 cm and 25.0 cm (CI 95% 513; 732; p < 0.001). In relation to time, there were differences between 5.0 cm and 15.0 cm (CI 95% 0.330; 0.515; p < 0.001), 5.0 cm, and 25.0 cm (CI 95% 0.928; 1.345; p = 0.001), 10.0 cm and 15.0 cm (p < 0.05) and 15.0 cm and 25.0 cm (p < 0.05). No significant differences were observed between the muscles in electromyography, although the triceps showed the highest muscle activation values. CONCLUSIONS: The maximum isometric force, rate of force development, time, velocity, and dynamic time had lower values, especially in the initial and intermediate phases in the sticking region.

3.
Int J Exerc Sci ; 14(7): 369-381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122719

RESUMO

We aimed to analyze the effects of long high-intensity interval training (HIIT) associated with pyridoxin supplementation on tissue and oxidative injury markers in animals. Male Wistar rats were divided into three groups (n = 8): sedentary (GS), HIIT (GH), and HIIT + pyridoxine (GHP). The HIIT comprised 18 sessions of 7 repetitions of 2min × 2min rest, 3 times per week. Pyridoxine was administered to the GHP group 1h before the exercise. The Thiobarbituric acid reactive substances (TBARS) and sulfhydryl group (SH) were analyzed as markers of oxidative stress and CK, LDH, ALT and AST as tissue lesions. There was an increase in the correlation between CK and LDH of 172.86% and 268.83% in the GH group compared with the GS group, respectively. There was a reduction in CK (34.37%) and LDH (34.74%) compared with the GH group, which had an increase of 229.03% in ALT. Pyridoxine supplementation reduced ALT by 80.62% in the GHP group compared with no-supplementation GH group. In addition, there was a reduction in plasma MDA (52.92%), liver (20.30%) and cardiac (22.06%) tissues in GHP compared to GH. It was possible to conclude that administration of pyridoxine attenuated oxidative stress, and tissue injuries induced by HIIT.

4.
Int J Exerc Sci ; 14(7): 36-381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055177

RESUMO

We aimed to analyze the effects of long high-intensity interval training (HIIT) associated with pyridoxin supplementation on tissue and oxidative injury markers in animals. Male Wistar rats were divided into three groups (n = 8): sedentary (GS), HIIT (GH), and HIIT + pyridoxine (GHP). The HIIT comprised 18 sessions of 7 repetitions of 2min × 2min rest, 3 times per week. Pyridoxine was administered to the GHP group 1h before the exercise. The Thiobarbituric acid reactive substances (TBARS) and sulfhydryl group (SH) were analyzed as markers of oxidative stress and CK, LDH, ALT and AST as tissue lesions. There was an increase in the correlation between CK and LDH of 172.86% and 268.83% in the GH group compared with the GS group, respectively. There was a reduction in CK (34.37%) and LDH (34.74%) compared with the GH group, which had an increase of 229.03% in ALT. Pyridoxine supplementation reduced ALT by 80.62% in the GHP group compared with no-supplementation GH group. In addition, there was a reduction in plasma MDA (52.92%), liver (20.30%) and cardiac (22.06%) tissues in GHP compared to GH. It was possible to conclude that administration of pyridoxine attenuated oxidative stress, and tissue injuries induced by HIIT.

5.
Front Physiol ; 12: 639406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935799

RESUMO

Objective: The objective of this systematic review was to identify the effects of different training methods in women who have survived breast cancer (WSBC). Data Sources: Studies were identified by searching SportDiscus, Web of Science, PubMed, Scopus, Scielo, and Bireme. Study Selection: The inclusion criteria were articles that addressed only breast cancer in women, were randomized clinical trials, and interventions involving physical training with Consort ≥80. Data Extraction: The PICO and CONSORT strategies were used for the selection of articles and quality assessment of randomized clinical trials, respectively. Two independent reviewers searched for articles among the databases. Disagreements were discussed, and in the case of an impasse, a third reviewer was consulted. Data Synthesis: Evidence that demonstrated the beneficial effects of physical exercise programs carried out by WSBC. Moderate or high-intensity exercise sessions have been shown to benefit women survivors of breast cancer. Among the modalities, the resistance exercise showed effects from 55% of one-repetition maximum (1 RM), exclusively or associated with other training regimes, such as aerobic (from 48% of heart rate), high-intensity interval training (HIIT), or impact. The main benefits include increased muscle strength, promoted by the practice of resistance exercise in combination with other types of exercises or alone; decreased fatigue; improved quality of life; improved psychosocial effects, and increased leisure time. Conclusions: Physical training performed at a moderate or high intensity (aerobic or anaerobic) can reduce fatigue, improve quality of life, improve sleep quality, and increase bone mineral density in women survivors of breast cancer.

6.
Nutr Metab (Lond) ; 18(1): 15, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33485363

RESUMO

BACKGROUND: Nutritional ergogenic aids are foods or nutrients that can improve physical performance. Among these foods with ergogenic properties, caffeine has shown that it can increase the fat catabolism, strength, and improve the cognition and time reaction of an athlete, therefore, it is hoped that it can improve the performance of judokas. This study through a double-blind crossover (supplement X placebo) protocol, investigated the effects caffeine supplementation (single capsule containing 5 mg/kg body mass intake 60 min before the session) on biochemical, anthropometrical, physical, subjective and hemodynamic variables measured before, during and after two typical judo trainingcxs sessions (120-min: 40-min of gymnastics; 40-min of specific technics and; 40-min of judo combat). METHODS: 8 high-level athletes (21.4 ± 2.0 years; 83.6 ± 15.2 kg; 1.8 ± 0.1 m; 17.9 ± 7.0 Fat%) were evaluated before and after each training for body mass, hydration, upper and lower limb power, performance in the special judo fitness test (SJFT), free fatty acids (FFA) in plasma, uric acid, glucose, lactate, heart rate, and pain. In addition, heart rate, FFA in plasma, uric acid, glucose, lactate, rating of perceived exertion and pain were assessed during the training. RESULTS: At 120 min, supplementation resulted in a higher concentration of plasma FFA (1.5 ± 0.5 vs. 1.0 ± 0.3 mmol/L; p = 0.047) and lactate (4.9 ± 1.8 vs. 3.0 ± 1.2 mmol/L; p = 0.047), and a lower concentration of uric acid (5.4 ± 0.9 vs. 7.0 ± 1.5 mg/dL; p = 0.04). Supplementation also resulted in performance maintenance (fatigue index) in the SJFT (Δ0.3 ± 2.0 vs Δ1.7 ± 2.5, for caffeine and placebo respectively, p = 0.046). No adverse effects were observed. CONCLUSION: Based on the applied dose, intake time, and sample of this study, we can conclude that caffeine produces an ergogenic biochemical effect, and improves performance in judo athletes.

7.
Int J Sports Physiol Perform ; 15(9): 1252-1259, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916657

RESUMO

PURPOSE: To verify the effects of using different grip widths in bench press performance in Paralympic powerlifting athletes. METHODS: Twelve experienced Paralympic powerlifting male athletes (25.40 [3.30] y, 70.30 [12.15] kg) participated in the study. Maximal dynamic strength and maximal isometric strength (MIS) were determined. Then, mean propulsive velocity (MPV) using 25%, 50%, and 100% of maximal dynamic strength load and time to achieve 30%, 50%, and 100% of MIS were assessed with 4 different grip widths, specifically the biacromial distance (BAD: 42.83 [12.84] cm), 1.3 BAD (55.68 [16.70] cm), 1.5 BAD (63.20 [18.96] cm), and 81 cm. Electromyographic analysis was performed during MIS assessment in the pectoralis major sternal portion, anterior deltoid, triceps brachii long head, and pectoralis major clavicular portion. RESULTS: Large differences were found between MPV performed with different grip widths using 25% of maximal dynamic strength load (P = .02, ηp2=.26). The 1.5 BAD grip tended to show greater force generation and MPV. Moreover, the time needed to achieve 30%, 50%, and 100% of MIS differed between grip widths (P = .03, ηp2=.24), with the lowest values obtained in the 1.5 BAD. Despite the nonstatistical differences that were found, grip widths caused moderate effects on muscle myoelectric activation, showing greater values for pectoralis major clavicular portion and pectoralis major sternal portion, for the 1.3 BAD and 1.5 BAD, respectively. The 1.5 BAD the grip width tended to show greater MPV values and faster contractile responses. CONCLUSIONS: These results highlighted the importance of choosing the specific grip width for improvement of performance in Paralympic powerlifting athletes, by increasing velocity of movement and force production in a shorter time, with greater activation of primary muscles.

8.
Nutrients ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396291

RESUMO

Diabetes mellitus is one of the most prevalent chronic diseases in the world; one of its main characteristics is chronic hyperglycemia. Pharmacotherapy and other alternatives such as regular exercise are among the therapeutic methods used to control this pathology and participate in glycemic control, as well as the ingestion of plant extracts with antioxidant effects. Among the different plants used for this purpose, curcumin has potential to be used to attenuate the hyperglycemic condition triggered by diabetes mellitus (DM). Some prior studies suggest that this plant has antioxidant and hypoglycemic potential. This review aims to evaluate the antioxidant and hypoglycemic potential of curcumin supplementation in Type 1 DM (T1DM) and Type 2 DM (T2DM). The search considered articles published between 2010 and 2019 in English and Portuguese, and a theoretical survey of relevant information was conducted in the main databases of scientific publications, including the Virtual Health Library and its indexed databases, PubMed, LILACS (Latin American and Caribbean Literature on Health Sciences-Health Information for Latin America and the Caribbean-BIREME/PAHO/WHO), and Scientific Electronic Library Online (SciELO). The associated use of turmeric and physical exercise has demonstrated antioxidant, anti-inflammatory, and hypoglycemic effects, suggesting that these could be used as potential therapeutic methods to improve the quality of life and survival of diabetic patients.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/terapia , Terapia por Exercício , Extratos Vegetais/administração & dosagem , Qualidade de Vida , Animais , Antioxidantes/administração & dosagem , Glicemia/análise , Terapia Combinada/métodos , Curcuma , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Suplementos Nutricionais , Modelos Animais de Doenças , Humanos , Hipoglicemiantes/administração & dosagem , Resultado do Tratamento
9.
J Int Soc Sports Nutr ; 11(1): 58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25649187

RESUMO

BACKGROUND: Natural antioxidants can reduce oxidative damage caused by high-intensity resistance training (RT). We investigated the in vitro antioxidant potential of hydroethanolic extract (HEE) from Bowdichia virgilioides on muscular damage and oxidative stress in rats subjected to high-intensity RT. METHODS: Thirty-two male Wistar rats were divided into four experimental groups: 1) control group (CG), oral administration (P.O.) of vehicle; 2) trained group (TG), vehicle-treated with RT; 3) B. virgilioides untrained group (BVG), treated with B. virgilioides HEE (200 mg/kg P.O.); and 4) trained B. virgilioides group (TBVG), treated with B. virgiliodes HEE (200 mg/kg P.O.). All animals were habituated to the training apparatus for 1 week. CT and TBVG animals were subjected to the training protocol, which consisted of three sets of 10 repetitions with 75% of the load established using the one-repetition maximum, for four weeks. CG and BVG animals were manipulated and fixed to the apparatus three times a week with no load. Treatment with B. virgilioides HEE or vehicle treatment was initiated after 25 days of RT (5 days; one dose per day). At the end of the experiments, plasmatic and gastrocnemius samples from all groups were obtained for the assessment of lipid peroxidation and creatine kinase activity. RESULTS: Compared to TG rats, TBVG rats showed decreases in plasma and gastrocnemius tissue lipid peroxidation by 55.68% (p <0.0001) and 66.61% (p <0.0012), respectively. Further, compared to TG rats TBVG rats showed decreases in plasma and gastrocnemius tissue oxidative stress by 62.83% (p <0.0005) and 54.97% (p <0.0197), respectively. CONCLUSIONS: B. virgilioides HEE treatment reduced markers of oxidative stress caused by high-intensity RT. Further, HEE treatment during training significantly reduced the markers of tissue damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...